Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            null (Ed.)Graph compression or sparsification is a basic information-theoretic and computational question. A major open problem in this research area is whether $$(1+\epsilon)$$-approximate cut-preserving vertex sparsifiers with size close to the number of terminals exist. As a step towards this goal, we initiate the study of a thresholded version of the problem: for a given parameter $$c$$, find a smaller graph, which we call \emph{connectivity-$$c$$ mimicking network}, which preserves connectivity among $$k$$ terminals exactly up to the value of $$c$$. We show that connectivity-$$c$$ mimicking networks of size $O(kc^4)$ exist and can be found in time $$m(c\log n)^{O(c)}$$. We also give a separate algorithm that constructs such graphs of size $$k \cdot O(c)^{2c}$$ in time $$mc^{O(c)}\log^{O(1)}n$$. These results lead to the first offline data structures for answering fully dynamic $$c$$-edge-connectivity queries for $$c \ge 4$$ in polylogarithmic time per query as well as more efficient algorithms for survivable network design on bounded treewidth graphs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available